## PHYSICAL WORLD

phenomena<sup>\*</sup>. **Classical Physics** deals mainly with macroscopic phenomena and includes subjects like **Mechanics**, **Electrodynamics**, **Optics** and **Thermodynamics**. Mechanics founded on Newton's laws of motion and the law of gravitation is concerned with the motion (or equilibrium) of particles, rigid and deformable bodies, and general systems of particles. The propulsion of a rocket by a jet of ejecting gases, propagation of water waves or sound waves in air, the equilibrium of a bent rod under a load, etc., are problems of mechanics. Electrodynamics deals with electric and magnetic phenomena associated with charged and magnetic bodies. Its basic laws were given by Coulomb, Oersted, chemical process, etc., are problems of interest in thermodynamics.

The microscopic domain of physics deals with the constitution and structure of matter at the minute scales of atoms and nuclei (and even lower scales of length) and their interaction with different probes such as electrons, photons and other elementary particles. Classical physics is inadequate to handle this domain and Quantum Theory is currently accepted as the proper framework for explaining microscopic phenomena. Overall, the edifice of physics is beautiful and imposing and you will appreciate it more as you pursue the subject.

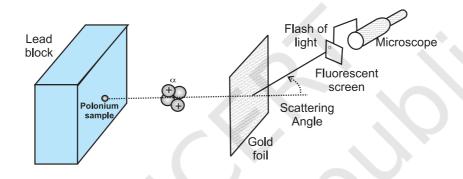



Fig. 1.1 Theory and experiment go hand in hand in physics and help each other's progress. The alpha scattering experiments of Rutherford gave the nuclear model of the atom.

Ampere and Faraday, and encapsulated by Maxwell in his famous set of equations. The motion of a current-carrying conductor in a magnetic field, the response of a circuit to an ac voltage (signal), the working of an antenna, the propagation of radio waves in the ionosphere, etc., are problems of electrodynamics. Optics deals with the phenomena involving light. The working of telescopes and microscopes, colours exhibited by thin films, etc., are topics in optics. Thermodynamics, in contrast to mechanics, does not deal with the motion of bodies as a whole. Rather, it deals with systems in macroscopic equilibrium and is concerned with changes in internal energy, temperature, entropy, etc., of the system through external work and transfer of heat. The efficiency of heat engines and refrigerators, the direction of a physical or

You can now see that the scope of physics is truly vast. It covers a tremendous range of magnitude of physical quantities like length, mass, time, energy, etc. At one end, it studies phenomena at the very small scale of length  $(10^{-14} \text{ m or even less})$  involving electrons, protons, etc.; at the other end, it deals with astronomical phenomena at the scale of galaxies or even the entire universe whose extent is of the order of  $10^{26}$  m. The two length scales differ by a factor of  $10^{40}$  or even more. The range of time scales can be obtained by dividing the length scales by the speed of light :  $10^{-22}$  s to  $10^{18}$  s. The range of masses goes from, say, 10<sup>-30</sup> kg (mass of an electron) to  $10^{55}$  kg (mass of known observable universe). Terrestrial phenomena lie somewhere in the middle of this range.

<sup>\*</sup> Recently, the domain intermediate between the macroscopic and the microscopic (the so-called mesoscopic physics), dealing with a few tens or hundreds of atoms, has emerged as an exciting field of research.